flawless victory {mely}

242 4.03.14.

Sunset on the Laguna Madre by (Elizabeth Brossa)

Sunset on the Laguna Madre by (Elizabeth Brossa)

(Source: R2--D2, via lemonyphresh)

15747 3.06.14.
inspirationfeed:

Stunning Storm Over Texas http://ift.tt/1gQDySE

inspirationfeed:

Stunning Storm Over Texas http://ift.tt/1gQDySE

180 2.21.14.
18797 2.21.14.
sammyslabbinck:

' Stellar Connection '
Collage on paper
© Sammy Slabbinck 2013
portfolio / flickr / shop / facebook


Gorgeous shot

sammyslabbinck:

' Stellar Connection '

Collage on paper

© Sammy Slabbinck 2013

portfolio / flickr / shop / facebook

Gorgeous shot

(via 2headedsnake)

686 2.21.14.

(via andresrza)

69573 2.21.14.
94 2.21.14.
Dope shot :)

Dope shot :)

(Source: weheartit.com, via ivegotpotential)

25789 2.21.14.
we-are-star-stuff:

What if You Were Born in Space?
Did you know that there has been an ‘uninterrupted’ human presence in space ever since November of 2001? That is rather awesome when you think about it, but all of the people who have spent time in space were born and grew up on Earth.
Okay, technically we were all born in space. But what would things be like for a person who was conceived and born in outer space?
NASA funds research programs devoted to studying a variety of aspects of living in space including the possibility of growing plants to the physical effects on the human body in a zero-gravity environment. These experiments are still in their very early stages since space travel itself is relatively new.
A woman has yet to give birth on a shuttle or in the Space Station nor has a pregnant woman even traveled in space. However, a few studies have sent pregnant rats into space so the development of the (Earth-born) babies could be investigated.
More recently in 2001 biologists Jeffrey Alberts of Indiana University and April Ronca of the NASA Ames Research Center sent 20 pregnant rats into space to determine some of the effects the zero-gravity environment had on the fetuses. The rats were sent in the middle of their pregnancies when the vestibular systems were beginning to develop in the fetuses. (The vestibular system in humans is a network of channels and sacs of fluid in the inner ear that regulates balance.) The mothers gave birth to normal-sized babies and were able to lactate and care for them normally. Even after the muscle mass lost due to the lack of gravity the labor contractions did not pose a problem for the mothers. There were noticeable effects on the vestibular systems of the space-based rat infants, however. The Earth-based babies were able to immediately right themselves upon being turned on their backs in water. The space-based babies had more trouble; some had to make a few attempts before achieving success and others were unable to do it at all. After five days of the same test though all the babies were able to roll over. The researchers also determined that the vestibular organs detecting angular changes were actually more advanced in the space-based babies, probably because their mothers were forced to roll around a lot on the shuttle due to the lack of gravity.
Sex is very difficult in zero gravity, apparently, because you have no traction and you keep bumping against the walls. Think about it: you have no friction, you have no resistance. But the lack of gravity is not the only issue making space births difficult. The effects on a developing fetus would likely be severe, perhaps disrupting normal embryonic development and even neurological functioning. A baby’s body and bones may develop differently in weightlessness.
If a pregnant woman flies in space and gives birth almost right away, the baby will be born pretty normal because it will develop in the womb very normally at Earth’s gravity. What happens then is very interesting.
The bone cells are programmed to grow; they don’t stop until you are a teenager or so. But it is gravity as a stress that makes the cells in the bones have the right alignment, or stack up properly and pull the bone so that it forms straight. Without gravity, the baby’s bones won’t get long and thin like adult bone. They will be very easy to break, and they won’t grow as fast. This is true for arms and legs.
The bones at the top of the baby’s head will actually grow thicker and stronger than on Earth. This is because your heart does not have to work so hard to move blood and other fluid from your feet to your upper body because there is no gravity. What happens is that the heart still pulls on the fluid in the legs, which now comes out much more easily. This causes the upper body to have more fluid and more pressure, which causes stress. Stress is always what makes bone grow and change. So, more pressure, more growth in the skull.
The bones in the hands will probably be normal because the baby/child/adult will use his hands just like on Earth. The feet will probably not grow much because they don’t get the stress from having the weight of your whole body on them. Ribs are interesting. Ribs protect your lungs and give support to your body so they don’t collapse. They would probably be okay, but develop thinner than on Earth, so they wouldn’t be nearly as strong. The spine is really going to be affected. The gravity won’t push/pull down on you, so the vertebrae won’t feel the stress, and they won’t grow. But they will get stress from the spinal cord as it grows and pushes out. You would probably end up with thinner, very easily crushed vertebrae.
Muscles work the same way. They need stress to grow and develop. Gravity is a stress force that pulls in one direction causing the muscle to develop in the right shape. So, if it is a muscle that won’t be used much (say, the muscles that move your feet), they won’t grow nearly as strong. Some muscles will be almost the same, such as your hand muscles. Other muscles, like your heart, will be different. Your heart won’t have to work as hard because there is no gravity to make blood circulation difficult. This takes a while to happen though. With a baby just born, probably the heart will never develop nearly as strong as a baby on Earth will.
Muscles and bones work together. The muscles are attached to bone, and they are very tightly connected. If you exercise a muscle, it pulls on the bone and causes a pulling stress. This helps the bone grow stronger in that area. This is why kids are told to play around outside when they are young - their bones grow very fast and if the child does a lot of exercise, the muscles get strong, making the bone very strong.
So, a baby born in space is going to have pretty strange and weak bones in most parts of their body. This shouldn’t affect them too much if they spend their whole life in space, but they will be in a lot of trouble if they come back to Earth. Their leg and feet bones will be too weak to hold them, the spine will probably crush under its own weight. The heart muscle will not be strong enough to pump blood around the whole body because of gravity pulling the blood down, and leg muscles will be too weak for you to stand. Basically, your bones and muscles will be much too heavy to support, and you will fall down in a big heap and die.
But if you are a baby born in space and someone drops you on your head when you return to Earth, your skull will be nice and thick.
[sources: x x x] For more info check this video.

we-are-star-stuff:

What if You Were Born in Space?

Did you know that there has been an ‘uninterrupted’ human presence in space ever since November of 2001? That is rather awesome when you think about it, but all of the people who have spent time in space were born and grew up on Earth.

Okay, technically we were all born in space. But what would things be like for a person who was conceived and born in outer space?

NASA funds research programs devoted to studying a variety of aspects of living in space including the possibility of growing plants to the physical effects on the human body in a zero-gravity environment. These experiments are still in their very early stages since space travel itself is relatively new.

A woman has yet to give birth on a shuttle or in the Space Station nor has a pregnant woman even traveled in space. However, a few studies have sent pregnant rats into space so the development of the (Earth-born) babies could be investigated.

More recently in 2001 biologists Jeffrey Alberts of Indiana University and April Ronca of the NASA Ames Research Center sent 20 pregnant rats into space to determine some of the effects the zero-gravity environment had on the fetuses. The rats were sent in the middle of their pregnancies when the vestibular systems were beginning to develop in the fetuses. (The vestibular system in humans is a network of channels and sacs of fluid in the inner ear that regulates balance.) The mothers gave birth to normal-sized babies and were able to lactate and care for them normally. Even after the muscle mass lost due to the lack of gravity the labor contractions did not pose a problem for the mothers. There were noticeable effects on the vestibular systems of the space-based rat infants, however. The Earth-based babies were able to immediately right themselves upon being turned on their backs in water. The space-based babies had more trouble; some had to make a few attempts before achieving success and others were unable to do it at all. After five days of the same test though all the babies were able to roll over. The researchers also determined that the vestibular organs detecting angular changes were actually more advanced in the space-based babies, probably because their mothers were forced to roll around a lot on the shuttle due to the lack of gravity.

Sex is very difficult in zero gravity, apparently, because you have no traction and you keep bumping against the walls. Think about it: you have no friction, you have no resistance. But the lack of gravity is not the only issue making space births difficult. The effects on a developing fetus would likely be severe, perhaps disrupting normal embryonic development and even neurological functioning. A baby’s body and bones may develop differently in weightlessness.

If a pregnant woman flies in space and gives birth almost right away, the baby will be born pretty normal because it will develop in the womb very normally at Earth’s gravity. What happens then is very interesting.

The bone cells are programmed to grow; they don’t stop until you are a teenager or so. But it is gravity as a stress that makes the cells in the bones have the right alignment, or stack up properly and pull the bone so that it forms straight. Without gravity, the baby’s bones won’t get long and thin like adult bone. They will be very easy to break, and they won’t grow as fast. This is true for arms and legs.

The bones at the top of the baby’s head will actually grow thicker and stronger than on Earth. This is because your heart does not have to work so hard to move blood and other fluid from your feet to your upper body because there is no gravity. What happens is that the heart still pulls on the fluid in the legs, which now comes out much more easily. This causes the upper body to have more fluid and more pressure, which causes stress. Stress is always what makes bone grow and change. So, more pressure, more growth in the skull.

The bones in the hands will probably be normal because the baby/child/adult will use his hands just like on Earth. The feet will probably not grow much because they don’t get the stress from having the weight of your whole body on them. Ribs are interesting. Ribs protect your lungs and give support to your body so they don’t collapse. They would probably be okay, but develop thinner than on Earth, so they wouldn’t be nearly as strong. The spine is really going to be affected. The gravity won’t push/pull down on you, so the vertebrae won’t feel the stress, and they won’t grow. But they will get stress from the spinal cord as it grows and pushes out. You would probably end up with thinner, very easily crushed vertebrae.

Muscles work the same way. They need stress to grow and develop. Gravity is a stress force that pulls in one direction causing the muscle to develop in the right shape. So, if it is a muscle that won’t be used much (say, the muscles that move your feet), they won’t grow nearly as strong. Some muscles will be almost the same, such as your hand muscles. Other muscles, like your heart, will be different. Your heart won’t have to work as hard because there is no gravity to make blood circulation difficult. This takes a while to happen though. With a baby just born, probably the heart will never develop nearly as strong as a baby on Earth will.

Muscles and bones work together. The muscles are attached to bone, and they are very tightly connected. If you exercise a muscle, it pulls on the bone and causes a pulling stress. This helps the bone grow stronger in that area. This is why kids are told to play around outside when they are young - their bones grow very fast and if the child does a lot of exercise, the muscles get strong, making the bone very strong.

So, a baby born in space is going to have pretty strange and weak bones in most parts of their body. This shouldn’t affect them too much if they spend their whole life in space, but they will be in a lot of trouble if they come back to Earth. Their leg and feet bones will be too weak to hold them, the spine will probably crush under its own weight. The heart muscle will not be strong enough to pump blood around the whole body because of gravity pulling the blood down, and leg muscles will be too weak for you to stand. Basically, your bones and muscles will be much too heavy to support, and you will fall down in a big heap and die.

But if you are a baby born in space and someone drops you on your head when you return to Earth, your skull will be nice and thick.

[sources: x x x] For more info check this video.

(via manifestationofadaydreamer)

605 2.21.14.
Gorgeous ❤️❤️❤️

Gorgeous ❤️❤️❤️

(Source: revolntion, via andresrza)

788551 2.21.14.

(Source: tayelchapo, via andresrza)

39165 2.21.14.

oldspice:

New Old Spice Re-Fresh Body Spray may cause boys to become men, girls to become girlfriends, and moms to become sad.

MP3’s 
Lyrics

Lol

51647 2.21.14.

kenobi-wan-obi:

Gegenschein

The gegenschein is a faint spot of light in the sky, diametrically opposite of the Sun.

The fact that its spectrum is identical to that of the Sun, like the zodiacal light, enforces the conclusion that we are seeing sunlight reflected from dust grains in the plane of the solar system.

There have been reports that under very favorable viewing conditions the zodiacal light extends to the gegenschein. The gegenshein is even fainter than the zodiacal light — fainter than the Milky Way — so any additional light from Moon, street lights, or a nearby planet and any obscuring haze make it impossible to see this faint glow.

(via kenobi-wan-obi)

3122 2.21.14.
500175 2.12.14.

(Source: gym-fit)

101 2.12.14.